Ferraro et al. Asthma Research and Practice (2018) 4:9
https://doi.org/10.1186/s40733-018-0045-6

Asthma Research and Practice

REVIEW Open Access

Exhaled biomarkers in childhood asthma:
old and new approaches

@ CrossMark

Valentina Ferraro '@, Silvia Carraro!, Sara Bozzetto, Stefania Zanconato and Fugenio Baraldi

Abstract

this disease.

Background: Asthma is a chronic condition usually characterized by underlying inflammation. The study of
asthmatic inflammation is of the utmost importance for both diagnostic and monitoring purposes. The gold
standard for investigating airway inflammation is bronchoscopy, with bronchoalveolar lavage and bronchial biopsy,
but the invasiveness of such procedures limits their use in children. For this reason, in the last decades there has
been a growing interest for the development of noninvasive methods.

Main body: In the present review, we describe the most important non-invasive methods for the study of airway
inflammation in children, focusing on the measure of the fractional exhaled nitric oxide (feNO), on the measure of
the exhaled breath temperature (EBT) and on the analysis of both exhaled breath condensate (EBC) and exhaled air
(Volatile Organic Compounds, VOCs), using targeted and untargeted approaches. We summarize what is currently
known on the topic of exhaled biomarkers in childhood asthma, with a special emphasis on emerging approaches,
underlining the role of exhaled biomarkers in the diagnosis, management and treatment of asthma, and their
potential for the development of personalized treatments.

Conclusion: Among non-invasive methods to study asthma, exhaled breath analysis remains one of the most
interesting approaches, feNO and “-omic” sciences seem promising for the purpose of characterizing biomarkers of

Background

Asthma is a common, potentially severe chronic disease
that in the majority of cases can be treated effectively to
control the symptoms and minimize the risk of flare-ups
(exacerbations). It usually involves chronic airway in-
flammation [1]. Asthma affects about 300 million indi-
viduals worldwide, and 5-20% of school-age children in
Europe [1]. Its prevalence has been increasing in the last
two decades, and childhood asthma has become a ser-
ious public health problem because of its morbidity and
related healthcare costs. The main pathophysiological
features of asthma are bronchial obstruction (due to
bronchial muscle constriction, mucosal edema and ex-
cessive airway secretions) and airway inflammation, but
its underlying pathogenic mechanisms have yet to be
fully characterized [2-5]. Indeed, it is nowadays well
known that the term asthma is applied to an
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heterogeneous group of conditions, which are character-
ized by fixed or labile airflow limitation, by different pat-
terns of inflammation, by different contribution from
bacterial and viral infections, by varying degrees of
cough reflex and of mucus hypersecretion [6].

A number of pathogenic factors have been identified
for this complex syndrome (asthma), including genetic
predisposition and several environmental factors. Also
early-life events may have a close link to the develop-
ment of respiratory diseases throughout the lifespan [2—
5]. Viral infections, exposure to tobacco smoke, and nu-
tritional factors are just some of the early environmental
noxae that can have a role in the development of asthma
and that may orient the search for new strategies for the
early prevention of this condition [7-9].

The key to the disease’s pathogenesis lies in the inter-
action between the host and the environment, which
gives rise to different clinical phenotypes with different
wheezing  patterns  (early, transient, persistent,
late-onset), different types of airway inflammation (eo-
sinophilic, neutrophilic, paucicellular), and a different
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response to treatment [10]. Although these phenotypes
are usually clinically relevant, they do not necessarily
offer any insight about the underlying disease processes.
That is why the concept of asthma endotypes has re-
cently been introduced, paving the way to the classifica-
tion of asthma in subtypes depending on the underlying
functional and pathophysiological mechanisms [11]. This
approach seems promising for the purpose of improving
our understanding of the disease’s pathogenesis [12, 13].
In this setting, it is fundamental to search for biomarkers
capable of orienting the diagnosis, management and
treatment of asthma, and possibly facilitating the devel-
opment of personalized treatments [14]. This could lead
to a new precision medicine type approach, which firstly
identifies the pathological process through non-invasive
measures of airway inflammation rather than traditional
symptoms and lung-function [6].

The gold standard for investigating airway inflam-
mation is bronchoscopy, with bronchoalveolar lavage
(BAL) and bronchial biopsy, but the invasiveness of
such procedures limits their use in children [15].
Airway inflammation might feasibly be studied by
analyzing sputum too, since its cell content corre-
lates strongly with that of BAL fluids. Sputum induc-
tion is also less invasive than bronchoscopy, but
sputum analysis is technically complicated and
suffers from a marked variability in routine clinical
use [15, 16].

Given the drawbacks of the invasive tests available,
much effort has gone into developing noninvasive
methods to investigate the pathogenic mechanisms
underlying asthma, based on exhaled breath analysis. Of
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course, the noninvasiveness of a test is particularly im-
portant when investigating childhood asthma (Fig. 1).

Here we discuss some of the methods that have been
studied in recent years for their possible role in asthma
characterization. The potential clinical applications and
future directions for these methods are summarized in
Table 1.

Fractional concentration of exhaled nitric oxide
(feNO)
The first report on the presence of gaseous nitric oxide
in exhaled human breath dates from 1993 [17]. Four
years later, it was found in higher than normal concen-
trations in children with asthma [18], and higher still
during asthma exacerbations, while it dropped rapidly
following oral steroid therapy [19]. As a result, the early
2000s saw a considerable number of publications explor-
ing the relationship between fractional concentrations of
exhaled nitric oxide (feNO) and asthma. Nitric oxide in
the respiratory system is produced mainly by two en-
zymes: constitutive nitric oxide synthase (NOS), which
constantly generates low concentrations of NO, and in-
ducible NOS (iNOS), the expression of which is
prompted by various inflammatory cytokines [20, 21].
FeNO can be measured using chemiluminescence and
electrochemical sensors. The online single breath
(SBOL) method is noninvasive, rapid, repeatable, and re-
producible, and it involves the subject inhaling through
the mouth for 2-3 s, to total lung capacity (TLC), then
slowly exhaling immediately in conditions of velum clos-
ure (achieved by using a positive pressure of 5-20
c¢cmH2O0 against the exhalation) [17, 22, 23].
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Fig. 1 Methods for investigating airway inflammation. Red = strongly invasive, red and green = mildly invasive, and green = noninvasive
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Table 1 Potential clinical application and future directions for
main exhaled biomarkers

Exhaled Biomarkers Potential Clinical Applications

and Future Directions

feNO Identification of early-onset
asthma among preschool
children with recurrent wheezing
Stratification of asthmatic patients
according to eosinophilic

inflammation (treatable trait)

Analytes measured in EBC Patient phenotyping and prediction
of therapy response based on

specific biomarkers profiles

VOCs in exhaled air Early asthma diagnosis

Patient stratification and phenotyping

feNO fractional exhaled nitric oxide, ICS inhaled corticosteroids, EBC exhaled
breath condensate, VOCs volatile organic compounds

The SBOL technique is well standardized and can be
easily applied in children who are able to cooperate [24].
For measuring exhaled NO in young or uncooperative
children, several techniques have been developed, but
they have the limitation of the lack of standardization
[24-26].

Several potential applications of feNO have been ex-
plored in pediatric asthma, especially as a diagnostic
tool, to predict response to ICS, and to guide patient
management. Many studies found a correlation between
feNO and sputum eosinophilia, blood eosinophilia,
serum eosinophil cationic protein, and IgE levels [17,
27]. FeNO is consequently considered a marker of a
common  asthma  endotype  characterized by
Th2-mediated airway inflammation, eosinophilia, and re-
sponsiveness to inhaled steroids [17, 27]. Since increased
levels of feNO have also been described in other atopic
conditions, it has been suggested that low feNO levels
predict a non-eosinophilic asthma phenotype better than
high levels can predict an eosinophilic one [28, 29]. On
the other hand, a recent systematic review supports a
role of feNO in ruling in rather than in ruling out
asthma [30]. In line with this assumption, it has been
suggested that feNO could help us to identify
early-onset asthma among preschool-age children with
recurrent wheezing [31-33].

FeNO is also seen as a marker capable of predicting
ICS responsiveness, since several studies found that its
levels dropped significantly in response to steroid ther-
apy [34-36]. Earlier studies on the potential role of
feNO in orienting treatment decisions did not consist-
ently find it useful to include feNO analysis in a
symptom-based approach to ICS treatment, but more
recent evidence suggests that it could help preventing
asthma exacerbations requiring oral steroids [20]. Some
authors also suggested that fluctuating feNO levels, and
their cross-correlation with symptoms, can generate use-
ful information on asthma severity and control [37]. So,
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even if there is no clear evidence to support the use of
feNO in addition to standard symptom-based manage-
ment for day-to-day asthma control [38, 39], it may be
that a therapy based on feNO levels could significantly
improve symptom control in some sub-phenotypes of
asthma. Further studies are needed, however, based on
standardized protocols and comparable study designs,
before exhaled NO can be used to adjust ICS dosage and
for asthma management [20].

The good standardization of the technique for FENO
measurement and the studies demonstrating its potential
clinical applications led to its adoption as a guide for
asthma management in NICE guidelines [40]. On the
other hand GINA guidelines [1] do not recommend its
clinical use, yet. As recently suggested by Pavord et al.
FENO could indeed have a role in the stratification of
patients according to the treatable trait of eosinophilic
inflammation and as a possible guide for a more person-
alized therapeutic approach [6].

Exhaled breath temperature (EBT)

Exhaled breath temperature (EBT) measurement has
been suggested as a noninvasive method to detect airway
inflammation [41] and airway remodeling [42, 43].

Several methods have been proposed for measuring
EBT, such as the rate of EBT increase, the peak of ex-
piratory temperature (PET) and the plateau value at the
end of expiration (PLET) [41, 44—47]. In pediatric popu-
lation these techniques are not easy to apply, so a new
and simplified device for measuring EBT during tidal
breathing has been proposed [48, 49].

Previous studies demonstrated that in asthma EBT is
related to the degree of airway inflammation [47], it in-
creases in uncontrolled asthma and decreases in re-
sponse to anti-inflammatory treatment [48, 50], it is
significantly higher in patients with severe asthma com-
pared to those with mild to moderate asthma [51] and it
reflects changes in airway inflammation in children with
virus-induced asthma exacerbations [52]. In contrast,
other studies found no relationship between EBT and
measures of asthma control [53].

Further studies are needed to standardize the method
of EBT measurement and to better understand the use-
fulness of this biomarker in asthma diagnosis and moni-
toring in children.

Exhaled breath condensate (EBC)

Exhaled breath condensate (EBC) can be used as a non-
invasive method for studying airway inflammation. EBC
is collected by cooling exhaled air by contact with a cold
surface or condenser [18, 54, 55]. EBC is therefore a di-
luted fluid, the volume of which is almost entirely water,
and consequently its analysis requires the application of
highly sensitive methods for a reliable assessment of the
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solutes [34]. EBC collection only requires tidal breathing
and it can be done safely and with no adverse effects even
in preschool age. Methods for EBC collection have been
developed also for very young children and infants [56].

The collected condensate contains unstable volatile (e.g.
H,0,) and semi- and non-volatile molecules (proteins and
cytokines) carried by respiratory droplets [54, 55]. Its
composition is believed to mirror that of the airway lining
fluid, thus enabling a noninvasive study of pulmonary bio-
chemical and inflammatory processes [18, 54, 57]. Many
biomolecules, markers of airway inflammation and oxida-
tive stress, have been identified and measured in the EBC
of children with asthma [57].

Although it has a great potential as a noninvasive
method for measuring asthma biomarkers, the main
limitation toward the clinical application of EBC remains
the lack of a systematic, meticulous description of how
it should be collected, preserved and analyzed. Horvath
et al. [34] recently published “A European Respiratory
Society technical standard”, which provides technical
norms and recommendations for the collection and ana-
lysis of EBC samples. Future studies should include a
systematic description of the methods used so that we
can arrive at a genuine data reproducibility [34].

EBC has been studied through both a target approach
(measurement of single analytes) and an untarget ap-
proach (omic techniques).

Measurement of single analytes

Many studies investigating airway inflammation have fo-
cused on eicosanoids, a large group of heterogeneous
arachidonic acid metabolites produced by free-radical or
enzymatic oxygenation, including prostanoids, leukotri-
enes and epoxides [58]. Leukotriene (LT) B4 is a potent
inflammatory mediator and a chemoattractant for neu-
trophils that has a role in the pathophysiology of asthma.
Increased levels of LTB4 have been found in the EBC of
asthmatic children. Montuschi et al. demonstrated that
they were about twice as high in steroid-naive patients
with asthma as in healthy subjects [59, 60].

Cysteinyl leukotrienes (LTC4, LTD4 and LTE4) are
powerful constrictors and proinflammatory mediators
that have been found in higher concentrations in the
EBC of patients with asthma, and particularly in cases
of unstable or severe asthma [61-64]. Our research
group demonstrated that Cys-LT levels dropped after
a 5-day course of oral prednisone treatment for
asthma exacerbations, thus showing that corticoste-
roids can affect the rise in LT production associated
with acute asthma exacerbations [63]. Meanwhile,
Bodini et al. found that exhaled Cys-LT levels and the
percentage of eosinophils in induced sputum were
lower after allergen avoidance [60].
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As for oxidative stress, several potential biomarkers
have been measured in EBC, such as 8-isoprostane, and
hydrogen peroxide (H202). 8-isoprostane is a
prostaglandin-like compound produced by arachidonic
acid peroxidation. It is found in significantly higher
levels in EBC from children with asthma, especially dur-
ing exacerbations. A 5-day course of oral prednisone
lowers the levels of 8-isoprostane, though they remain
higher than in controls. This finding suggests that corti-
costeroids may not be fully effective in controlling oxida-
tive stress in children with an asthma exacerbation [63].
Another marker of oxidative stress collected in EBC is
hydrogen peroxide (H202), which derives from the in-
flamed airways releasing superoxide anions. A
meta-analysis on asthmatic adults showed that H202
concentrations in EBC are higher than normal in asth-
matic patients, and correlate with disease severity, dis-
ease control, and response to steroid treatment [65, 66].
They also decline in asthma patients treated with corti-
costeroids [66]. Similar findings in childhood asthma
were reported by Jobsis et al.: H202 levels in the EBC of
their asthmatic patients were significantly higher than in
healthy controls, and especially so in the steroid-naive
patients [67].

The products of the nitric oxide pathway (NOx), such
as 3-nitrotyrosine, nitrite and nitrate, can also serve as
markers of oxidative stress when measured in EBC.
3-nitrotyrosine (3-NT) derives from the nitration of the
amino acid tyrosine and may serve as a biomarker of the
generation of reactive nitrogen intermediates. EBC con-
centrations of 3-NT in asthmatic children are five times
higher than in healthy controls, with no difference be-
tween steroid-naive and unstable steroid-treated asth-
matic patients [68]. Two pediatric studies also found
that asthmatic children had significantly higher mean ni-
trite/nitrate levels than their healthy counterparts, but
there are conflicting results on the association between
these molecules and asthma severity [69-71].

Proteomics and metabolomics
When it comes to studying complex chronic diseases like
asthma, no single biomarker can describe a full picture of
the underlying pathogenic processes, but each biomarker
analyzed can shed light on the mechanisms involved. On
the other hand, using the “-omic” sciences enables large
datasets to be obtained from single samples, potentially
leading to the identification of disease biomarkers, and to
the characterization of novel functional or pathological
mechanisms [72]. Proteomics and metabolomics are among
the “-omic” approaches applied to the study of asthma.
Proteomics involves studying the full complement of
proteins in a biological sample to quantify potential bio-
markers associated with a given disease [72]. Bloemen et
al. used proteome analysis to study disease-specific
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proteolytic peptide or protein patterns in EBC samples
from 30 healthy children and 40 children with asthma.
The authors found a specific pattern of differentially
expressed peptides in the two groups, but it is still im-
possible to identify individual peptides because they
occur in very limited quantities and we still lack the ne-
cessary analytical sensitivity [73].

Metabolomics is an unbiased approach that, being guided
by no a priori hypothesis, enables the metabolite compos-
ition of a biological sample (or metabolome) to be studied
using a spectroscopic technique (usually NMR spectros-
copy and mass spectrometry). The metabolome provides a
picture of the state of metabolic activity that is the result of
both genetic influences and environmental stimuli [74].
That is why metabolomics is considered the “-omic” science
that comes closest to phenotype expression, giving us the
chance to look at both genotype-phenotype and
genotype-envirotype relationships [75], as well as providing
a tool for studying how an organism responds to exposure
to risk factors [74]. The small molecules constitute the me-
tabolome mark fingerprints, which can be associated with
phenotypes and endotypes of a given clinical condition
[74]. In the study of asthma, metabolomics has been ap-
plied to several biological matrixes, including exhaled air
and exhaled breath condensate.

The metabolomic analysis of EBC samples enables us
to distinguish between children with and without asthma
[76]. Different EBC metabolomic profiles have also been
associated with different asthma phenotypes, and a par-
ticular metabolomic profile has emerged in the
characterization of severe asthma [77]. Applying the
metabolomic approach to blood samples also reveals a
metabolic profile associated with severe asthma, includ-
ing metabolites related to oxidative stress [78].

Taken together, all these studies strongly support the
potential for using the -omic approaches in asthma re-
search, though we need to consider the current limits of
this approach, due largely to the lack of a standardized
EBC collection method. Nonetheless, before metabolo-
mic findings can be useful in clinical practice, they need
to be replicated in multicenter studies on childhood
asthma (external validation), and biomarkers identified
by the untargeted metabolomic approach need to be
confirmed and quantified using targeted approaches.

Volatile organic compounds (VOCs)

VOCs originate from the lungs or upper airways and
from blood circulation and they spread from the pul-
monary capillary bed into the alveoli. They have been
analyzed in exhaled breath using a metabolomic ap-
proach in the study of several chronic respiratory dis-
eases, including asthma [71]. The fingerprint of VOCs in
exhaled breath is called “breathome” and its study is
called “breathomics” [79].
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Different methods have been proposed for breath sam-
pling. Among them the Breath Free Sampler is a highly
standardized method enabling the collection of different
breath volumes for a direct or offline analysis (details
available at http://www.breathe-free.org). Breath Free
Sampler is characterized by high repeatability and repro-
ducibility, but it currently awaits validation in clinical
trials [34].

Two different techniques have been used to study ex-
haled VOC profiles: (i) gas chromatography with mass
spectrometry, a quantitative method that enables indi-
vidual components to be identified; and (ii) the elec-
tronic Nose (e-Nose), a qualitative method that relies on
a pattern-recognition technology to obtain a probabilis-
tic discrimination between biomarker profiles [80, 81].
VOC collection is influenced by environmental, physio-
logical and methodological factors, including conditions
existing before, during and after their collection [34, 82].

Dallinga et al. found that analyzing VOCs in exhaled air
using GC-MS could distinguish between children with and
without asthma [83]. Other studies suggest that the analysis
of exhaled VOC profiles is a promising non-invasive
method for asthma diagnosis [79], monitoring [84—86],
phenotyping and identification of treatable traits [87].

Pre-school children with acute respiratory wheeze have
a different VOC profile compared to children with no
wheezing, and such profile remains altered even after
symptoms resolution in children with rhinovirus-induced
wheeze [88]. Furthermore, in preschool-age children with
recurrent wheezing, VOC profiles could discriminate be-
tween children with preclinical asthma and those with a
transient form of wheezing, significantly improving on the
prediction based on clinical data alone [89, 90].

Conclusion

In the last 20 years, a great deal of research on the topic
of asthma (particularly in children) has focused o nonin-
vasive exhaled biomarkers. FENO measurements cannot
be routinely recommended for all children with asthma,
but it could have a role in the characterization of a spe-
cific treatable trait (Th2-mediated eosinophilic inflam-
mation). Exhaled breath analysis remains one of the
most interesting approaches for studying childhood
asthma, and “-omic” approaches seem promising for the
purpose of characterizing biomarkers associated with
specific asthma endotypes.
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