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Treatment outcome clustering patterns 
correspond to discrete asthma phenotypes 
in children
Ivana Banić1†, Mario Lovrić2,3*† , Gerald Cuder3, Roman Kern2,3, Matija Rijavec4, Peter Korošec4 and 
Mirjana Turkalj1,5,6 

Abstract 

Despite widely and regularly used therapy asthma in children is not fully controlled. Recognizing the complexity 
of asthma phenotypes and endotypes imposed the concept of precision medicine in asthma treatment. By apply-
ing machine learning algorithms assessed with respect to their accuracy in predicting treatment outcome, we have 
successfully identified 4 distinct clusters in a pediatric asthma cohort with specific treatment outcome patterns 
according to changes in lung function  (FEV1 and  MEF50), airway inflammation (FENO) and disease control likely 
affected by discrete phenotypes at initial disease presentation, differing in the type and level of inflammation, age 
of onset, comorbidities, certain genetic and other physiologic traits. The smallest and the largest of the 4 clusters- 1 
(N = 58) and 3 (N = 138) had better treatment outcomes compared to clusters 2 and 4 and were characterized by 
more prominent atopic markers and a predominant allelic (A allele) effect for rs37973 in the GLCCI1 gene previously 
associated with positive treatment outcomes in asthmatics. These patients also had a relatively later onset of disease 
(6 + yrs). Clusters 2 (N = 87) and 4 (N = 64) had poorer treatment success, but varied in the type of inflammation 
(predominantly neutrophilic for cluster 4 and likely mixed-type for cluster 2), comorbidities (obesity for cluster 2), level 
of systemic inflammation (highest hsCRP for cluster 2) and platelet count (lowest for cluster 4). The results of this study 
emphasize the issues in asthma management due to the overgeneralized approach to the disease, not taking into 
account specific disease phenotypes.
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Background
Asthma is a complex disorder of a still not com-
pletely known pathobiology, characterized by revers-
ible airway obstruction, airway hyperresponsiveness 
to specific and non-specific stimuli, and a chronic 
inflammation in the airways. This, along with the vari-
ability in disease etiology, type and level of inflamma-
tion, bronchial damage and lung function impairment, 

specific clinical features and natural course of the dis-
ease (persisting to adulthood or remission in adoles-
cence), reflects the vast heterogeneity and complexity 
of asthma [1]. Current knowledge of asthma patho-
physiological mechanisms as a Th2 cell mediated aller-
gic reaction does not suffice in explaining and dealing 
with a large portion of this heterogeneity, which is 
why in the past years the concept of asthma as a single 
disease has been revisited and redefined as a complex 
syndrome or an “umbrella” term encompassing sev-
eral different subtypes (phenotypes) defined by newly 
conceived immuno-pathophysiological mechanisms- 
endotypes [2]. This complexity is multiplied by the 
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fact that certain children with asthma seem to retain 
a specific sum of clinical features during the course of 
their disease, while others are known to transition to 
another (or several) phenotype.

A number of studies have attempted to perform 
asthma phenotyping by the use of unsupervised 
machine learning techniques. Most of them have 
identified age of onset- early onset vs late onset dis-
ease presentation [3–7]; gender [8]; atopy status [3, 9], 
obesity [5, 6] and type of inflammation- eosinophil, 
neutrophil, mixed type, Th2 high/low [4, 8, 10, 11] as 
main discriminants in distinguishing specific clusters 
(phenotypes). Although these studies identified several 
distinct phenotypes, the vast disease heterogeneity has 
still most likely been a major hindrance in the develop-
ment of targeted therapies in asthma so far [12].

Today, common asthma treatment is actually symp-
tomatic treatment, with short-term medications that 
are mostly used to relieve current symptoms and long-
term medications used in case of persistent symptoms 
to control the underlying inflammation and prevent 
exacerbations. There is a marked patient-to-patient 
variability as well as intra-individual repeatability in 
the therapeutic response for all common medication 
classes in asthma management, indicating that the 
level of treatment response in asthma might have a 
strong genetic basis. A significant proportion of chil-
dren with asthma have poor (partial or none) response 
when using currently available anti-inflammatory 
drugs [13]. Although asthma cannot be cured, with 
appropriate management adequate control and good 
quality of life can be achieved [14]. Still, even the lat-
est GINA guidelines and recommendations, involving 
symptom control and exacerbation risk do not offer 
adequate insight into disease etiology and true level of 
asthma control. Also, there are no recommendations 
as to treatment failure identification and changes rec-
ommended towards the treatment of choice (different 
drug classes or their combinations) or only general 
choice recommendations are made (the physician can 
choose between several treatment options with the 
generally preferred option recommended). Moreover, 
few phenotyping studies to date have focused on treat-
ment success as a study outcome despite the evident 
issues in treatment efficacy in asthma [9, 15].

In this study we attempted to utilize hierarchical 
clustering and decision trees in understanding treat-
ment outcomes, while combining extensive clinical 
and genetic data in a relatively homogenous cohort 
of pediatric patients with asthma, with a long-term 
clinical follow-up (2  years), which has not been done 
before.

Population and Methods
Population studied: The SCH (Srebrnjak Children`s 
Hospital) cohort
In this cohort there are 365 pediatric patients (355 
children aged 2–17  years and 10 adolescents aged 
18–22 years) with atopic and non-atopic, intermittent to 
severe persistent asthma [14], which were recruited in a 
prospective, non-interventional type of clinical study at 
the outpatient clinic at the Srebrnjak Children’s Hospi-
tal (SCH). This cohort was also subject to our previous 
study [16]. Informed consent was obtained from the chil-
dren’s parents/legal guardians. The study protocol was 
approved by the local Ethics Committee (at SCH). Rel-
evant clinical and other characteristics of the cohort (at 
baseline) are presented in Table 1.

At their first visit patients underwent physical exami-
nation, anthropometric measurements and a standard 
battery of diagnostic procedures and measurements to 
establish a diagnosis of asthma (lung function and allergy 
tests, as well as other tests and procedures- hematologic 
and biochemical blood tests, comorbidity testing etc.). 
The patients started treatment with inhaled corticoster-
oids, ICS (alone or in combination with LABA- long-
acting beta-agonists) and/or LTRA (leukotriene receptor 
antagonists), according to GINA guidelines (Global Strat-
egy for Asthma Management and Prevention, steps 1–5, 
according to presenting symptoms and assessed disease 
severity [14]). Treatment was prescribed by pediatric 
allergy or pulmonology specialists (study investigators) 
at SCH. Follow-up visits with lung function and airway 
inflammation testing as well as physical examination 
were made on average every 6  months over the period 
of 2  years (shown in Table  2). Additionally, treatment 
outcomes (responses) and the level of disease control 
(according to GINA guidelines) were assessed at each 
visit and if needed, treatment was adjusted according to 
the stepwise approach to asthma management [14]. The 
observational study is described in the supplementary file 
in detail.

Response variables
According to their response to treatment (at each visit, 
short-term- every 6  months and long-term- 12 and 
18  months after treatment initiation), patients were 
divided into “good”, “moderate” and “poor” responders 
in accordance with  the Minimal Clinically Important 
Difference (MCID) for lung function adjusted for chil-
dren and data from other studies evaluating treatment 
response in asthma, taking into account changes in the 
level of disease control and changes in the level of airway 
inflammation- FENO values, presented in Table  3 [14, 
17–21].
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Machine learning and statistical methods
The data preprocessing is described in the supplementary 
file. Due to missing data 347 patients were included in the 
analysis. Hierarchical clustering analysis (HCA) on the 
response data was performed using the Ward’s method [5, 
7, 8]. Clustering was performed on the patients` response 
data in each treatment phase from baseline to the 3rd 
control visit, represented as nominal data (1 = , 2 = , 3 = , 
corresponding to good, moderate and poor response to 
treatment, respectively). To determine the  differences 
between the clusters we applied the Kruskal–Wallis test 

for continuous and the chi-square test for categorical 
variables [5]. Decision tree classification (DTC) [22] was 
used to reveal discriminatory phenotypic characteristics 
affecting response clustering based on non-linear rela-
tionships. Decision trees have proven useful for deci-
sion making [16, 23] often resembling human-like logic 
by binning patients according to their diagnostic features 
and are accepted by medical personnel [5]. The 4 clusters 
obtained from HCA on response outcomes were set as 
target classes (4 classes) for DTC. The features were all 
relevant data from baseline, as indicated in Table 2. The 

Table 1 Clinical and other relevant characteristics (demographic, lung function, asthma features, comorbidity etc.) of the cohort 
(at baseline). SD- standard deviation, M- male, F- female, BMI- body mass index, AR- allergic rhinitis, AD- atopic dermatitis, GERD- 
gastroesophageal reflux disease, RI- reflux index, OSA- obstructive sleep apnoea, AHI- apnoea/hypopnea index, IgE- immunoglobulin 
E, WBC- white blood cells, hsCRP- high-sensitivity C-reactive protein. Percentile of BMI- underweight (≤ 5), normal (5–85), overweight 
(86–94), obese (≥ 95)

Age (years)- (mean, SD) 9.97 (3.97)

M- 9.68 (3.93) F- 10.44 (4.01)

Gender (M/F)- N (%) M 223 (61.10) F 142 (38.90)

Percentile of BMI- N (%) Underweight 11 (3.01)

Normal 253 (69.32)

Overweight 50 (13.70)

Obese 51 (13.97)

Duration of disease (years)- mean (SD) 3.27 (2.83) N = 302

Comorbidities- N (%), mean (SD) AR 312 (85.48)

AD ever 101 (27.67)

AD currently 23 (6.33)

GERD, RI score 101 (27.82), 9.10 (SD- 
11.19)

OSA, AHI 14 (3.84), 0.57 (SD- 2.84)

Atopy (yes/no)- N (%) Yes 319 (87.40)

No 46 (12.60)

Total IgE (kIU/l)- mean (SD) 614.54 (1145.62), N = 351

Eosinophil count (absolute)- median (SD) 416.35 (341.27), N = 355

Neutrophil count (% of total WBC)- mean (SD) 49.76 (12.86), N = 364

hsCRP (mg/l)- mean (SD) 2.23 (9.30), N = 311

Lung FENO (ppb)- mean (SD) 20.49 (20.07), N = 350

% of FEV1 predicted- mean (SD) 87 (17.14)

% of MEF50 predicted- mean (SD) 88 (23.11)

Table 2 The features used in this study. The features are described into more detail in the supplementary file

baseline demographics gender, age

subjective clinical data at baseline (personal and family medical history- atopy status, allergic rhinitis (AR), atopic dermatitis (AD), food allergy and 
other comorbidities)

objective clinical data at baseline and other follow-up appointments- symptom control, frequency and severity of exacerbations in the period since 
the last visit, lung function, airway inflammation (FENO) measurement and medication useat baseline- skin prick and total 
and specific IgE test results, hematologic and biochemical blood test results, comorbidity status ENT examination, pH prob-
ing with impedance for the reflux episodes monitoring for diagnostics of GERD/LPR, polysomnography for diagnostics of 
OSAS, height and weight for calculation of BMI percentiles

genetic data genotypes for rs37973 (GLCCI1), rs9910408 (TBX21), rs242941 (CRHR1), rs1876828 (CRHR1), rs1042713 (ADRB2) and rs17576 
(MMP9)
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DTC algorithm provides feature importance, a non-linear 
technique for understanding machine learning decisions 
and prioritization of variables [16, 24–26] in our case 
important to differentiate among the clusters/classes.

Results
We have identified 4 distinct outcome clusters from the 
dendrogram in Fig. 2 which are described in Table 4.

The relevant features corresponding to outcome data 
and clinical, demographic and genetic data at baseline 
characterizing each response cluster/class (cluster statis-
tics) are shown in Tables 5 and 6, respectively, while the 
main discriminants according to the DTC are presented 
by feature importance in % (see supplementary data, 
Table S5).

The main phenotype variable discriminatory for the 
response clusters according to DTC was  MEF50 predicted 
at baseline, followed by the use of reliever medication 
(SABA) which is a parameter incorporated in asthma 
control assessment, use of combination treatment 
(ICS + LABA) which also indicates poorer disease con-
trol; hsCRP, FENO at baseline, neutrophil blood count 
which reflect the type and level of inflammation, and 
total IgE which corresponds to the atopy status and sen-
sitization levels (see Fig.  2 and Table  6), although these 

variables were not significantly different between clusters 
in the cluster statistics.

Discussion
Our results indicate that clusters 1–3 have overall good 
long-term treatment outcomes assessed by changes 
in asthma control. Cluster 1 had moderate levels of 
response to treatment according to lung function param-
eters (both  FEV1 and  MEF50), which may be explained 
by the fact that these patients didn`t have significantly 
impaired lung function at baseline. These patients also 
had relatively poor FENO- related response to treatment, 
which may be a consequence of sensitization to HDM, 
as the majority of these patients had strong sensitization 
to HDM (sIgE > 17.51 kU/L), see Tables 5 and 6. A study 
involving a pediatric cohort in Korea has demonstrated 
that the levels of sIgE to HDM correlate with increases 
in FENO [27]. Moreover, sensitization to HDM has 
been associated with poorer disease outcomes in chil-
dren. [28] Also, these patients were older (mean age ca. 
12  years) and had later onset of the disease (ca. 6  years 
of age), which may also contribute to poorer response to 
treatment [3–7]. Cluster 1 also had the highest eosino-
phil count and the highest serum total IgE levels (Fig. 2 
and Table  6), which may indicate a higher level of Th2 
inflammation.

Table 3 Response variables assessed at each visit (compared to a previous one- 6, 12 and 18 months after baseline). Response to 
treatment is defined into more detail in the supplementary file (Table S3). ppb- parts per billion

FEV1 MEF50 FENO Asthma control

Good Increase ≥ 10% predicted Increase ≥ 15% predicted Decrease < 20% for FENO values > 35 (50) ppb
or
increase < 10 ppb for FENO values < 35 (50) 

ppb

improvement in asthma control

Moderate  ± 9%
predicted

 ± 14%
predicted

 ≤ 20% FENO ≤ 20% for FENO values over 35 
(50) ppb

or
 ± 10 ppb for FENO values < 35 (50) ppb

no changes in partial asthma control

Poor Decrease ≤ 
(-10%) predicted

Decrease
 ≤ (-15%) predicted

Increase > 20% for FENO values > 35 (50) ppb
or
increase > 10 ppb for FENO values < 35 (50) 

ppb

deterioration in asthma control

Table 4 Description of the obtained clusters from Fig. 1. The descriptions are extracted from the statistical analysis in Table 5

Cluster 1(N = 58) patients with overall good response to treatment according to the level of asthma control, moderate response to treatment 
according to lung function parameters (relative changes in  FEV1 and  MEF50) and moderate or poor response to treatment 
according to changes in FENO

Cluster 2(N = 87) patients with overall good response to treatment according to the level of asthma control, good or moderate levels of 
response to treatment according to changes in FENO, moderate response to treatment according to % change in  FEV1 and 
poor or moderate levels of response to treatment according to changes in  MEF50

Cluster 3(N = 138) patients with overall good response to treatment according to all parameters analyzed (see Sect. 2.2.)

Cluster 4(N = 64) patients with overall poor (moderate and poor) response to treatment according to changes in lung function, moderate levels 
of response according to FENO changes and long-term poor response to treatment according to the level of asthma control
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Cluster 2 was similar to cluster 1 in terms of response to 
treatment according to disease control and  FEV1 param-
eters, but they had good or moderate levels of response 
to treatment according to FENO changes, probably due 
to the fact that this cluster was not significantly associ-
ated with sensitization to HDM. These children had rela-
tively earlier age of onset of disease (ca. 5 years of age). 
Additionally, cluster 2 patients had poor  MEF50- related 
response, although their baseline  MEF50 measurements 
were not impaired (Tables  5 and 6). This suggests that 
lung function in the distal airways deteriorates with time 
in these patients despite regular medication use which 
contributes to the importance of the small airways in 
children with asthma [29]. Additionally, there is evidence 
that obstruction in the small airways may be involved in 
the pathophysiology and resistance to treatment with ICS 
in children, especially those with increased BMI [30] and 
that the impairment of the small airways disease may be 
present despite rare and mild asthma symptoms and nor-
mal spirometry in children [31].

Cluster 2 had the highest levels of serum hsCRP (Fig. 2 
and Table  6), which indicates that these patients may 
have higher levels of systemic inflammation and hence, 

poorer disease and treatment outcomes. [32] Moreover, 
cluster 2 patients had a higher proportion of overweight 
and obese patients compared to other clusters (Table 6, 
Fig. 2), which is in concordance with other findings indi-
cating that obesity in asthma is associated with poorer 
disease outcomes and non-responsiveness to treatment 
with ICS. [33, 34] These patients also had higher levels of 
eosinophilic inflammation (eosinophil count) than clus-
ters 3 and 4 but also higher neutrophil count than clus-
ters 1 and 3 (Table  6, Figs.  1 and 2), supporting recent 
findings that obesity in mice is associated with a mixed 
granulocytic inflammation and may contribute to a 
refractory therapeutic response as well as exacerbation of 
disease severity [35].

Cluster 1 was also different from cluster 2 in exhibit-
ing a dominant genotype (AA) and allelic (A allele) effect 
for the rs37973 polymorphism in the GLCCI1 gene, pre-
viously associated with positive treatment outcomes in 
patients using ICS (Table 6). Also, clusters 1 and 3 differ 
from 2 and 4 in rs37973 distribution.

Cluster 3 were somewhat younger than patients in 
clusters 1 and 2 (mean age just under 10 years) but still 
had a relatively later onset of disease (ca. 6 years of age). 

Table 6 Cluster statistics related to relevant clinical, demographic and genetic data, including treatment use at baseline. Ward`s 
Euclidean method, Kruskal- Wallis and χ2 test, p < 0.05. Strong sensitization defined as sIgE to respective allergen of > 17.51 kU/L 
(classes 4–6)

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 p value
No of patients N = 58 N = 87 N = 138 N = 64

Strong sensitization to house dust mite (sIgE d1)—No 18 (31.03%) 40 (45.98%) 73 (52.90%) 31 (48.44%)  < 0.05

Strong sensitization to house dust mite (sIgE d1)—Yes 40 (68.97%) 47 (54.02%) 65 (47.10%) 33 (51.56%)  < 0.05

Mean (STD) Mean (STD) Mean (STD) Mean (STD)

% FEV1 predicted at baseline 0.89 (0.20) 0.96 (0.13) 0.82 (0.17) 0.88 (0.15)  < 0.001

% MEF50 predicted at baseline 0.92 (0.22) 1.03 (0.19) 0.79 (0.22) 0.84 (0.24)  < 0.001

FENO at baseline (ppb) 21.5 (23.61) 17.23 (16.15) 23.07 (23.14) 18.59 (13.38)

Age (yrs) 11.79 (3.39) 10.16 (3.82) 9.98 (3.84) 9.61 (3.64)  < 0.01

Height (cm) 153.05 (17.78) 143.9 (19.11) 143.86 (21.12) 142.23 (21.24)  < 0.05

Disease duration (yrs) 5.72 (3.43) 5.08 (3.84) 4.12 (3.8) 3.45 (3.11)  < 0.001

Total IgE (kIU/L) 686.34 (744.36) 421.95 (578.5) 653.9 (1164.19) 484.79 (516.04)

Eosinophil absolute count (Dunger) 419.99 (284.96) 418.71 (347.17) 380.16 (305.29) 377.22 (349.65)

Neutrophil blood count (%) 49.72 (11.26) 50.79 (13.18) 49.57 (12.82) 51.99 (12.96)

hsCRP (mg/L) 2.58 (6.31) 4.02 (14.45) 3.11 (7.52) 2.57 (3.72)

Platelets (× 109/L) 291.09 (86.54) 278.68 (108.14) 283.72 (105.47) 257.7 (105.31)

ICS medium and high doses use from 2nd to 3rd visit, N (%) 30 (51.72%) 32 (36.78%) 51 (36.96%) 38 (59.38%)  < 0.05

SABA use from 2nd to 3rd visit, N (%) 7 (12.07%) 6 (6.90%) 4 (2.90%) 27 (42.19%)  < 0.001

BMI percentile 0–5, N(%) 0 (0) 3 (3.45) 4 (2.9) 3 (4.69)

BMI percentile 5–85, N(%) 47 (81.03) 53 (60.92) 94 (68.11) 46 (71.88)

BMI percentile > 85, N(%) 11 (18.87) 31 (35.63) 40 (28.99) 15 (23.43)

Gene_rs37973—GG 13 (22.41%) 13 (14.94%) 15 (10.87%) 12 (18.75%)  < 0.05

Gene_rs37973—GA 18 (31.03%) 48 (55.17%) 70 (50.72%) 34 (53.12%)  < 0.05

Gene_rs37973—AA 27 (46.55%) 26 (29.89%) 53 (38.41%) 18 (28.12%)  < 0.05
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These patients had the lowest  FEV1 and  MEF50 at base-
line measured (Tables  5 and 6), which indicates that 
they had the highest improvement in lung function in 
response to treatment. These patients also had a higher 
frequency of the A allele for rs37973, which may contrib-
ute to better responsiveness to ICS (Table 6)  [36]. Hence, 
clusters 1 and 3 have very similar frequencies of alleles 
and genotypes, while clusters 2 and 4 have very similar 
frequencies of alleles and genotypes. Allele A is highly 
overrepresented in cluster 1 and 3 in comparison to 2 

and 4. Cluster 3 was also characterized by higher serum 
total IgE levels (Table 6, Fig. 2), but not with significantly 
higher eosinophil or neutrophil count, which may indi-
cate lower levels of airway inflammation in these patients 
contributing to positive treatment outcomes. Addition-
ally, these patients had the highest levels of FENO at 
baseline (see Table 6, Figs. 1 and 2), which might explain 
their better responsiveness to treatment with ICS [37].

Cluster 4 was the only one characterized by poor 
long-term control-related response. Additionally, these 

Fig. 1 Hierarchical cluster analysis (HCA) of response to treatment with common classes of asthma treatment. N = 347, 12 features used: response 
to treatment according to changes in  MEF50, FENO,  FEV1 and level of disease control between each respective visit (baseline to 3rd control visit)

Fig. 2 Main discriminants (relevant features) characterizing each outcome (response) clusters/class corresponding to clinical, demographic and 
genetic data at baseline, according to the decision tree algorithm. Ward`s method, p < 0.05, Gini < 0.2. The short/long names for respective variables 
are defined in the supplementary data (Table S4)
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patients had poor treatment outcomes according to 
lung function parameters, in spite of the highest reliever 
medication use and highest rate of medium and high 
ICS doses use of all clusters (Table  5). These patients 
were the youngest (mean age 9.6  years) but also had 
later onset of disease (ca. 6 years of age). They had some-
what lower  FEV1 and  MEF50 measurements at baseline, 
but still within acceptable physiologic range (Table  6), 
indicating lung function impairment with time. Clus-
ter 4 patients had the highest neutrophil count (Fig.  2, 
Table  6), which has been associated with more severe 
asthma outcomes and, moreover, with non-respon-
siveness to corticosteroids [38]. Additionally, cluster 
4 had lower platelet counts compared to other clusters 
(Table  6). Lower platelet count due to their contribu-
tion to allergic inflammation might be more prominent 
in children [39]. Platelets may also be involved in more 
extensive airway remodeling, as well as in the develop-
ment of steroid-refractory asthma, since ICS do not 
affect platelet function [40].

Although a number of clustering studies have per-
formed unbiased statistically based analyses on large 
cohorts of patients involving a wide range of clinical 
variables, they have been limited in the terms of clini-
cal characteristics they have used to identify different 

phenotypes and still do not provide much insight into 
the underlying disease mechanisms [2]. Additionally, 
different methods employed in these studies have been 
shown to yield different results in cluster assignments, 
especially in different populations [41, 42]. To the best 
of our knowledge, this is the first study focusing on 
treatment outcome patterns and response to treatment 
in children and the pathophysiological mechanisms 
underlying such outcomes. To date, only one study has 
focused on long-term treatment outcomes in 3 inde-
pendent cohorts (including pediatric patients) [15]. A 
limitation of the present study is that these findings 
may very well be population-specific. The study popu-
lation was very homogeneous (mostly milder disease 
forms, mostly atopic, ethnically homogeneous), which 
was an advantage in identifying genetic traits associated 
with treatment response patterns, but a disadvantage in 
identifying clear disease phenotypes. Also, since some 
children with asthma are known to “switch” pheno-
types during the course of their disease, it is not certain 
whether these results reflect a current state (transient 
phenotype) or a stable sum of clinical manifestations 
and disease traits underlying specific (long-term) treat-
ment outcome patterns [43]. Additionally, the treatment 
outcome assessment period may have been too short to 

Fig. 3 A schematic representation of the main characteristics of the 4 clusters identified in this study. Clusters 1 and 3 seem to have a more positive 
pattern of treatment outcomes and were characterized by more prominent atopic markers and a predominant allelic (A) effect for rs37973, a 
polymorphism in the GLCCI1 gene, and with a relatively later onset of disease. Clusters 2 and 4 had poorer treatment success patterns and were 
characterized by higher levels of airway and systemic inflammation and comorbidities, but varied in the type of inflammation (predominantly 
neutrophilic for cluster 4 and mixed-type for cluster 2) and platelet count (lowest for cluster 4). Cluster 2 was the only one with relatively earlier 
onset of asthma (5 years of age)



Page 9 of 11Banić et al. asthma res and pract            (2021) 7:11  

reflect any biologically significant effects, especially on 
complex traits such as lung function changes in response 
to treatment. On the other hand, the latest control-based 
GINA guidelines suggest treatment response review 
every 3–6  months and longer-term assessment (such 
as the one in this study) will minimize possible random 
effects when focusing on shorter periods of treatment 
use. Although the total number of variables used in this 
study was large (N = 280), surely not all clinically signifi-
cant traits were encompassed and additionally, we could 
only infer on certain pathophysiologic mechanisms 
indirectly. We did not use direct biomarkers of airway 
inflammation, such as induced sputum or bronchoal-
veolar lavage (BAL), but in pediatric cohorts minimally 
invasive procedures are an absolute prerequisite. This 
is why we used surrogate biomarkers- blood eosinophil 
and neutrophil count as well as FENO level. Recent find-
ings suggest that blood eosinophil count is a simple and 
valid biomarker in the management of asthma, reliably 
predicting future risk of exacerbations and treatment 
response [44]. Additionally, the sample size in certain 
subgroups (clusters) might be small, preventing more 
detailed phenotype characterization.

Conclusion
We have identified 4 distinct response clusters vary-
ing in treatment outcomes according to lung function, 
airway inflammation and disease control parameters 
and duration of treatment, briefly presented in Fig. 3.

The results of this study underpin the issues in asthma 
treatment and management due to the overgeneralized 
approach to the disease, not taking into account spe-
cific disease phenotypes in children. The cohort will be 
followed up additionally, both for cluster (phenotype) 
stability and transitions as well as to compare (confirm) 
these findings in other age groups and populations. Fur-
ther characterization of specific disease phenotypes is 
essential, involving larger numbers of patients, multi-
centric, longitudinal and prospective studies and even 
more clinically relevant parameters. Additionally, it is 
of high importance to distinguish between meaningful 
asthma subtypes at a population and individual patient 
level, and to identify specific mechanisms and novel 
endotypes involved in the disease presentation in order 
to develop personalized treatment as well as prevention 
strategies. This will aid in developing complex prediction 
models which will stratify patients according to their spe-
cific disease traits and risk for treatment failure, poten-
tially establishing novel and better therapeutic options 
and enabling full quality of life for patients with asthma.
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