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Abstract

Background: Breathing pattern disorders are frequently reported in uncontrolled asthma. At present, this is
primarily assessed by questionnaires, which are subjective. Objective measures of breathing pattern components
may provide additional useful information about asthma control. This study examined whether respiratory timing
parameters and thoracoabdominal (TA) motion measures could predict and classify levels of asthma control.

Methods: One hundred twenty-two asthma patients at STEP 2- STEP 5 GINA asthma medication were enrolled.
Asthma control was determined by the Asthma Control Questionnaire (ACQ7-item) and patients divided into ‘well
controlled’ or ‘uncontrolled’ groups. Breathing pattern components (respiratory rate (RR), ratio of inspiration
duration to expiration duration (Ti/Te), ratio of ribcage amplitude over abdominal amplitude during expiration
phase (RCampe/ABampe), were measured using Structured Light Plethysmography (SLP) in a sitting position for 5-
min. Breath-by-breath analysis was performed to extract mean values and within-subject variability (measured by
the Coefficient of Variance (CoV%). Binary multiple logistic regression was used to test whether breathing pattern
components are predictive of asthma control. A post-hoc analysis determined the discriminant accuracy of any
statistically significant predictive model.

Results: Fifty-nine out of 122 asthma patients had an ACQ7-item < 0.75 (well-controlled asthma) with the rest
being uncontrolled (n = 63). The absolute mean values of breathing pattern components did not predict asthma
control (R* = 0.09) with only mean RR being a significant predictor (p < 0.01). The CoV% of the examined breathing
components did predict asthma control (R* = 0.45) with all predictors having significant odds ratios (p < 0.01). The
ROC curve showed that cut-off points > 7.40% for the COV% of the RR, > 21.66% for the CoV% of Ti/Te and >
18.78% for the CoV% of RCampe/ABampe indicated uncontrolled asthma.

Conclusion: The within-subject variability of timing parameters and TA motion can be used to predict asthma
control. Higher breathing pattern variability was associated with uncontrolled asthma suggesting that irregular
resting breathing can be an indicator of poor asthma control.
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Introduction

The goal of asthma management is to achieve optimal
asthma control [1]. To assess asthma control, symptom
questionnaires are currently used in clinical practice [2].
As this can be sometimes misleading due to their reli-
ance on the patients’ perceptions, objective physiological
markers, such as lung function, are commonly used
alongside with symptoms questionnaires to ensure
asthma progress [3]. To date, traditional lung function
tests primarily provide information about airway calibre
and lung volume whilst monitoring single forced expira-
tory maneuvers. On the other hand, this lacks monitor-
ing of the natural behaviour of breathing causing
ambiguity about the clinical significance of changes in
tidal breathing in relation to different levels of asthma
control.

Natural behaviour of breathing is assessed by quan-
tifying breathing patterns with breathing pattern com-
prising components of volume, timing and
thoracoabdominal (TA) movements [4]. Breathing pat-
tern components, such as tidal volume (Vt), timing
parameters (inspiration and expiration duration or
their ratio, respiratory rate (RR)) and TA motion, can
now be measured non-invasively over time without
requiring patients’ cooperation compared to trad-
itional lung function tests [5, 6]. To date, breathing
pattern disorders (also known as dysfunctional breath-
ing) are commonly reported in patients with uncon-
trolled asthma, even though their relationship (causal
or coincidental) has not been clearly determined yet
[7, 8]. The most commonly reported respiratory
symptoms of dysfunctional breathing are predominant
upper thoracic breathing, asynchrony between ribcage
and abdominal motion, breathlessness, chest tightness,
wheezing and deep sighing [9]. However, most of
these have been described subjectively through clini-
cians’ observations or using symptom questionnaires,
such as the Nijmegen Questionnaire (NQ) [10]. The
use of the NQ in this way has been criticised due to
its reliance on patients’ perceptions and the lack of
incorporating direct measures of quantifiable breath-
ing pattern components [11, 12].

Changes in a limited number of quantifiable breathing
pattern components have been previously reported
among asthma patients [13], but any relationship of
them among different levels of asthma control have not
been established yet. A positive weak correlation (r=
0.33) has been reported between TA asynchrony, as
measured using Respiratory Inductive Plethysmography
(RIP), and Asthma Control Questionnaire (ACQ7-item)
[14]. Raoufy et al. [15] has also reported that within-
subject variability of Vt and breath cycle duration as
measured by the RIP, could differentiate uncontrolled
asthma patients (n =10) from patients with well-
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controlled asthma (n=10) as determined by the pres-
ence of asthma symptoms. However, no firm conclu-
sions have been drawn regarding the use of other
multiple breathing pattern components, such as respira-
tory timing components or individual movements of TA
area, to predict asthma control. Moreover, the optimal
breathing pattern measures used to classify levels of
asthma control have not been clearly specified yet.

Considering all the above, the study’s aim was to ob-
tain measures of multiple quantifiable breathing pattern
components, including both mean and within-subject
variability measures, and determine whether changes in
respiratory timing components and individual TA move-
ments can be used to predict and classify levels of
asthma control.

Methods

This observational cross-sectional study recruited 122
adult asthma patients with a range of asthma severity
from a difficult-to-treat outpatient clinic at the Univer-
sity Hospital Southampton and from staff and students
at the University of Southampton. The sample size was
determined based on the number of events per variable
as proposed in [16]. This indicated that a sample size of
20 subjects per predictor in the regression model for
each category of the binary outcome (ACQ question-
naire) could be expected to give a credible outcome for
a logistic regression analysis. Individuals with a medical
diagnosis of asthma without any other chronic respira-
tory disease or any upper respiratory tract infection on
the day of data collection were eligible for this study.
Levels of asthma control were determined by the ACQ7-
item and cut-off points <0.75 and > 1.50 were used to
define well-controlled and uncontrolled asthma respect-
ively. Asthma patients with partially-controlled asthma
(ACQ7-item scores between 0.75 and 1.50) were not in-
cluded in this study. All participants were between STEP
2 and STEP 5 asthma medication according to GINA
guidelines [1].

After obtaining informed consent, participants’ demo-
graphic data and medication history were collected.
Asthma medication data was used to determine asthma
severity. Participants’ breathing pattern components
were recorded during resting breathing in a seated pos-
ition and then spirometry (Vitalograph) was performed
to evaluate lung function.

Breathing pattern components were recorded using
the Structured Light Plethysmography (SLP, Thora-3Di™,
Pneumacare Ltd) according to manufacturers’ guidelines
[17]. This is a non-invasive motion-analysis recording
system. It comprises a contactless device which projects
a grid pattern of light onto an individual’s chest wall
covering the area between the clavicles and the umbil-
icus. The distortion of the grid pattern intersection
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points caused by the displacement of the anterior surface
of the chest wall is recorded by two digital cameras. The
two digital cameras are attached on the SLP which gen-
erates a time-varying output trace. The manufacturer’s
own software did not allow direct breath-by-breath esti-
mations of ribcage and abdominal amplitudes (RCampe
and ABampe). Thus, an automatic peak detection algo-
rithm written in Matlab code and used in our previous
research [18] was used to obtain values of breathing pat-
tern components during a breath by breath analysis of
SLP’s output trace.

The automatic algorithm identified local minima and
maxima of the inspiration phase for each breath cycle.
The RR was defined as the number of complete breath
cycles in one minute and the inspiratory/ expiratory
phase ratio (Ti/Te) was defined as the proportionality
between inspiratory and expiratory phases. The inspira-
tory time (Ti) was calculated as the time between a
minimum in the sum SLP output trace and the next
peak. The expiratory time (Te) was calculated as the
time between a peak and the next minimum. The rib-
cage and abdominal amplitudes (RCampe and ABampe)
were defined as the vertical distances between a trough
and the next peak on the SLP’s output as derived from
the different SLP’s traces used to record the motion of
the ribcage and abdomen separately. The within-subject
variability of the breathing pattern components was cal-
culated as the Coefficient of Variance expressed as a per-
centage (CoV%).

The patients’ breathing pattern components were re-
corded for 5 min at the sitting position. The participants
were requested to stay still and quiet during the whole
recording procedure. This was to minimise external
body movement artefacts on the SLP’s output trace as
this could bias values of breathing pattern components
during data extraction. When patients were ready to be
recorded, they were falsely informed about the start of
breathing pattern recording. The actual recording time
started one minute after the initial notification. This was
to eliminate any impact of the patients’ awareness on
breathing pattern measurements whilst recording nat-
ural behavior of their breathing.

Descriptive statistics were used to summarise
demographic data and lung function measurements
Comparisons of the breathing pattern components be-
tween well-controlled and uncontrolled asthma groups
were made using the Mann-Whitney U test (significance
level p < 0.01) as normal distribution of the data was not
found. Multiple binary logistic regression, using the
forced method, was performed to predict uncontrolled
asthma (ACQ7-item >1.50). Two regression models
were applied, one using absolute mean values of RR, Ti/
Te and RCampe/ABampe as predictors. The other one
involved the within-subject variability measures (Cov%).
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Both regression models met the assumption of multicol-
linearity (Variance Inflation Factor < 10). When all pre-
dictors of a regression model significantly predicted
uncontrolled asthma, a post-hoc analysis using a Re-
ceiver Operating Characteristic curve (ROC) was used to
identify cut-off points for changes in breathing pattern
components distinguishing well-controlled and uncon-
trolled asthma.

Results

One hundred twenty two adult asthma patients (75
females) were recruited and completed the study
(mean age (sd) 44.75years (15.98years). Sixty-three
participants had an ACQ score of > 1.5 (uncontrolled
asthma), whereas 59 participants scored <0.75 (well-
controlled asthma). Thirty-three participants had mild
asthma (STEP 2 on GINA asthma medication), with
29 of these being in the well-controlled group while
the rest of them had moderate-to-severe asthma
(STEP 3, 4 and 5 on GINA asthma medication).
There were similar numbers of males and females in
both groups (Table 1). Both groups also had similar
average body mass index (BMI). Those in the uncon-
trolled asthma group had reduced average lung func-
tion compared to the well-controlled asthma group
(Table 1).

Although those in the uncontrolled asthma group had
significantly higher median RR than those in the well-
controlled group, no significant differences were found
for the other absolute mean values of breathing pattern
components (Ti/Te and RCampe/ABampe) (Table 2).
On the other hand, the within-subject variability mea-
sures (CoV%) of all the breathing pattern components
were found to be significantly increased in the uncon-
trolled asthma group compared to the well-controlled
group (Table 2).

When mean values of RR, Ti/Te and RCampe/
ABampe were entered into the regression model asthma
control was not predictable with only the beta coefficient
of RR being significantly greater than zero (Table 3).
When within subject variability measures (CoV%) of
breathing pattern components were entered into the
model, a good fit was found (Table 4). This accounted
for 45% of the variance in the ACQ7-item scores. The
beta coefficients of the CoV% of all breathing pattern
components were found to be significantly greater than
zero suggesting that increased within-subject variability
of RR, Ti/Te and RCampe/ABampe predicts uncon-
trolled asthma. A linear relationship was found between
the CoV% of all breathing pattern components and the
log of the ACQ7-item score with no more than 5% of
the total cases being considered as influential cases
(standardised residuals >2) in the specific regression
model.
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Table 1 Demographic data and lung function measurements of asthma control groups

Variable Well controlled asthma group (n =59)

Uncontrolled asthma group (n =63)

Gender 23 males; 36 females

Asthma severity 29 mild; 30 moderate-to-severe

24 males; 39 females

4 mild; 59 moderate-to-severe

Age (years) M sd 95%Cl 1] sd 95%Cl
41.20 17.78 36.83-45.58 48.06 14.56 44.40-51.73
BMI (kg/m?) 24.95 375 23.97-25.93 2649 401 2548-27.50
FEV: predicted (%) 100.90 18.81 96.00-105.81 76.06 2493 69.79-82.34
FEV,/FVC 8191 944 79.45-84.37 7449 15.28 70.64-78.34
PEF(I/min) 527 142 4.90-5.65 4.06 1.56 3.67-445

u Mean value, sd standard deviation, 95%Cl 95% Confidence intervals; asthma control groups were determined by the ACQ7-item with scores < 0.75 and > 1.50

showing well-controlled and uncontrolled asthma respectively

A post-hoc analysis showed that a regression model
including the CoV% of breathing pattern components
correctly classified 53 out of 59 patients with ACQ7-
item <0.75. It also correctly classified 48 out of 63
patients with ACQ7-item > 1.50. The sensitivity and spe-
cificity of the regression model were estimated to be
77.94 and 88.88% respectively with the area under the
ROC being 0.895 (95% C I [0.84, 0.95], sig 0.000, p <
0.01) (Fig. 1). Based on individual ROCs for the CoV% of
individual breathing pattern components (Fig. 2), a cut-
off point >7.40% for the CoV% of the RR discriminated
well-controlled from uncontrolled asthma. Optimal cut-
off points for the CoV% of Ti/Te and RCampe/ABampe
were estimated to be >21.66% and > 18.96% respectively
(Table 5).

Discussion

The study aimed to examine whether respiratory timing
parameters and/ or individual TA movements could pre-
dict and classify levels of asthma control. The within-
subject variability of breathing pattern components, such
as RR, Ti/Te and RCampe/ABampe, was found to pre-
dict asthma control, but their absolute mean values did
not. Based on these findings, the within-subject variabil-
ity of breathing pattern components is suggested as a

better indicator of asthma control than their mean
values when measured in a single occasion. This may be
because the within-subject variability can efficiently re-
flect changes in the natural behaviour of tidal breathing
occurred in relation to asthma control. The importance
of measuring the natural behaviour of breathing patterns
has been previously highlighted as this reflects better the
adaptability of the respiratory system occurred during
symptomatic periods of asthma [19].

On the other hand, the limited variance we found in
the absolute mean values of Ti/Te and RCampe/
ABampe may have biased the asthma control prediction.
Although the RR was found to be a significant predictor
of asthma control, there was a lack of a linear relation-
ship between mean RR and asthma control. For example,
increased RR were not always associated with uncon-
trolled asthma. Lack of asthma control prediction using
mean values of the examined breathing pattern compo-
nents may be attributed to the presence of study’s con-
founders previously reported in other cross-sectional
observational study designs [20, 21]. Examples of such
confounders could be a postural effect, the patients’
asthma complexity, the underlying patients’ anxiety
levels, and an effect of rescue medication usage prior to
breathing pattern measurements. Some of these, such as

Table 2 The differences in the breathing pattern components between asthma control groups

Breathing Well-controlled group (n =5 9) Uncontrolled group (n =63) Mann- p
component M Min-Max® M Min-Max Whitney U (1-tailed)
RR (bpm) 14.92 7.09-21.05 17.16 740-32.02 175 0.000*
Ti/Te 0.66 0.40-0.90 0.68 0.40-0.96 1689 0385
RCampe//L\BampeC 1.29 0.43-4.20 133 0.37-5.31 1798 0.729
CoVeg (%) 4.79 0.00-23.02 11.73 0.00-29.71 655 0.000*
CoVirire (%) 19.05 1049-46.11 33.22 14.28-57.39 606 0.000%
COVicampe/ asampe(%) 1482 6.05-24.82 2645 7.74-57.62 844 0.000*

M median value
PMin-Max minimum and maximum values
“RCampe/ABampe Ribcage to abdominal amplitude during expiration phase

dCoV%chmpe/AB,,mpe The within-individual variability of ribcage to abdominal amplitude during expiration phase

*significant result at p <0.01
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Table 3 The regression model including mean values of
breathing pattern components used to predict uncontrolled
asthma

Predictors B (SE) 95% Cl for Odds Ratio P
Lower Odds Ratio Upper

RR (bpm) 0.16 (0.05) 1.06 1.17 130 0.002*

Ti/Te 0.10 (1.79)  0.03 1.10 3736 0954

RCampexp/ABampexp” 007 (029) 061 1.07 188 0812

B, 0.07; R? 0.09; R 0.12; —2LL 157.38
*starred sig. Value was found to be significant at p < 0.01

posture and emotions, have been clearly suggested to
affect absolute mean values of breathing pattern mea-
surements [20—22], but the impact of asthma complexity
and medication usage on breathing patterns is not clear
yet.

Respiratory rate can be affected by different factors,
and so there was no clear separation between the well-
controlled and controlled groups for this parameter in
our study. Asthma patients frequently have co-existing
anxiety which can have an impact on the RR [23]. There
is also a relationship between asthma and obesity [24],
and it is well known that BMI can have an impact on
asthma control and timing components of breathing pat-
terns [25]. Although levels of anxiety were not assessed
in our study, our study’s individuals with raised RR and
well-controlled asthma were obese (BMI > 30 1<g/m2).
The normal RR found in individuals of the uncontrolled
asthma group is unexplained, but could be due to the ef-
fect of rescue medication on RR. The participants were
asked to state whether they had taken any type of
asthma medication prior to breathing pattern measure-
ments. No attempt was made to control the participants’
use of medication, they were just advised to take their
medications as normal. It was established that all indi-
viduals had taken their controller medication as pre-
scribed, but that patients with normal RR and
uncontrolled asthma had additionally used rescue medi-
cation before attending the recording session. However,
the impact of either short-acting or long-acting asthma
medication on  quantifiable  breathing  pattern

Table 4 The regression model including the CoV% of breathing
pattern components used to predict uncontrolled asthma

Predictors B (SE) 95% Cl for Odds Ratio p
Lower Odds Upper
Ratio
CoVgg(%) 0.15 1.05 1.16 1.29 0.000*
(0.05)
CoVri/re(%) 0.10 1.04 1.1 1.18 0.001*
(0.03)
CoVrcampexp/ 0.09 1.05 1.1 117 0.005*
ABarmpexp(%) (0.05)

B, 0.07; R? 0.45; R 0.59; —2LL: 96.87
*starred values were significant results at p < 0.01
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Fig. 1 The ROC curve of the regression model including the CoV%
of the examined breathing pattern components

components (both absolute or variability measurements)
has not yet been established.

In addition, Raoufy et al. [15] have previously reported
that the within-subject variability of Vt and breath cycle
duration can differentiate patients with well-controlled
asthma from those with uncontrolled asthma. Our find-
ings are in agreement with Raoufy et al’s work despite
methodological differences, such as the method used to
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Fig. 2 The different ROC curves for the CoV% of RR (blue line), Ti/Te

(red line) and RCampe/ABampe (green line)
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Table 5 Optimal cut-off points for the CoV% of each breathing pattern component and estimates of the area under the curve

(AUC)

Breathing component Optimal cut-off point® AUC Std error 95% ClI p
CoVgg (%) >7.40 0.824 0.039 0.747-0.900 0.000*
CoVrire (%) >21.66 0.837 0.038 0.763-0911 0.000*
CoVrcampe/agampe (%) > 1878 0.773 0.044 0.686-0.859 0.000%

?Optimal cut-off points were selected as the closest points from the left corner of the individual ROC curves for the CoV% of each breathing paramete

*significant result was defined at p < 0.01

determine asthma control (National Asthma Education
and Prevention program vs ACQ7-item), the breathing
pattern recording time (60 min vs 5 min), the recording
posture (supine vs sitting) and the equipment used to
monitor breathing patterns (SLP vs RIP) at rest.

The optimal time for recording variability within
breathing pattern parameters is not known in the litera-
ture. We measured within-subject variability over 5 min
and found this was sufficient for making significant pre-
dictions of asthma control using respiratory rate, pro-
portionality of respiratory phases, and TA motion. To
the best of authors’ knowledge, the study presented here
also provides for a first time specific cut-off points for
the within-subject variability of the breathing pattern
components, which differentiated well-controlled from
uncontrolled asthma. However, more research is re-
quired to confirm the accuracy of our results in the
future.

In addition, the different posture selected in our study
compared to Raoufy et al. [15] did not seem to have an
impact on the ability of within-subject variability of the
breathing pattern components to predict asthma control.
However, more research involving different postures,
such as supine or standing, is required to check main-
tenance of the identified association between asthma
control and within-subject variability of breathing pat-
tern components.

Some limitations underlie this research. We did not
include patients with partially controlled asthma
(ACQ7-item score between 0.75 and 1.50) so that
ACQ7-item score could be used as a binary outcome
within the recruited sample. A causal or coincidental re-
lationship between within-subject variability and asthma
control could not be determined from our findings due
to the selected study design. It is not known whether un-
controlled asthma preceded the increased within-subject
variability of the breathing pattern components, or vice
versa. However, we speculate that increased within-
subject variability in the presence of uncontrolled
asthma is likely to be the result of several changes of the
respiratory system as previously proposed in the litera-
ture [26]. For example, dysfunctional breathing has been
characterised as a change in the biomechanical and
physiological components of breathing, resulting in
intermittent or chronic respiratory symptoms, which can

worsen asthma progress [26]. In any way, a future pro-
spective cohort study is required to examine the exact
nature of the relationship between the changes in quan-
tifiable breathing pattern components and asthma
control.

Conclusion

The study showed that within-subject variability of tim-
ing parameters and TA motion predicts and classifies
levels of asthma control, but same results were not
found for mean values of them. It is concluded that in-
creased within-subject variability of RR, Ti/Te and
RCampe/ABampe is associated with uncontrolled
asthma shedding a light on the clinical importance of
the changes in tidal breathing regularity as an adjunct
physiological marker of asthma control.
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